

# SYNTHESIS OF CeO<sub>2</sub>-COATED TiO<sub>2</sub> MICROPARTICLES AND PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE

Ali İmran VAİZOĞULLAR, Ahmet BALCI, Mustafa Tamer UZUN, Mehmet UĞURLU

Muğla Sıtkı Koçman University, Faculty of Science, Department of Chemistry, 48000-

# MUĞLA

Abstract: TiO<sub>2</sub> nanoparticle layed sol-gel method that was coated with CeO<sub>2</sub> by means of chemical precipitation technique. X-ray diffraction (XRD), infrared (IR) spectra, scanning electron microscopy (SEM) of X-ray (EDAX), and transmission electron microscopy (TEM) were used to characterize the CeO<sub>2</sub>-coated TiO<sub>2</sub> particles. XRD patterns showed that the core area of the core shell particles was amorphous SiO<sub>2</sub>, and the shell area was fluorite-structured CeO<sub>2</sub>. IR results indicated that the coating of the TiO<sub>2</sub> nanoparticle with CeO<sub>2</sub> evidently induced the presence of new bands at 1711, 1620, 1554, 1192 ve 1040 cm<sup>-1</sup>, belonging to Ce–O–Ti bands. SEM and TEM analysis showed that CeO<sub>2</sub>-coated TiO<sub>2</sub> microparticles showed a spherical morphology with the diameter about 0,5-1  $\mu$ m and a uniform particle size. Photoactivity of TiO<sub>2</sub> and TiO<sub>2</sub>/CeO<sub>2</sub> core shell particles degradation for Methylene Blue (MB) and Methylene Orange (MO) was found that %41 and %34 respectively for TiO<sub>2</sub>/CeO<sub>2</sub> core shell particles. The photoactivity of TiO<sub>2</sub> was decreased after coated with CeO<sub>2</sub> with in 90 min

# **1. Introduction**

In these days, there has been a great interest in the preparation of core–shell structured materials such as sol–gel [1,2], microemulsion [3–4], thermal reduction [5], and hot injection method [6]. Although the microemulsion method has the advantage of the precise control of particle size and morphology at mild temperatures and pressures [7], sol gel method has a wide of applications. Ceria (CeO<sub>2</sub>) is a cubic fluorite-type structured ceramic material that does not show any known crystallographic change from room temperature up to its melting point (2700°C) [8-9]. Cerium oxide (CeO<sub>2</sub>) is a versatile rare-earth oxide material that has frequently been used as an industrial catalyst in processes such as catalytic cracking, methanol dissociation, water–gas shift reaction and automotive emission control, due to its characteristic oxygen storage/release property [10]. As well as it uses in many applications, such as UV absorbents and filters [11-12], electrolytes in the fuel cell technology [13-14],

water-gas shift catalysts [15-16], polishers for chemical mechanical planarization (CMP) [17-18], etc. Most of the applications require the use of non-agglomerated nanoparticles, as aggregated nanoparticles lead to inhomogeneous mixing and poor sinterability [19]. Catalytic properties of CeO<sub>2</sub> have been attributed to the formation of Ce<sup>+3</sup> defect sites and subsequent oxygen vacancies . CeO<sub>2</sub> is n-type semiconductor and has band gap energy that 2,7-3,4 eV , CeO<sub>2</sub> is generally known as inactive material . Researcher worked that about the electron localization of CeO<sub>2</sub> with precise observation of high-resolution scanning tunneling microscopy reveals that the defects of CeO<sub>2</sub> are difficult to move. In this study, the preparation of silica–ceria, core–shell microparticles was synthesied using sol gel method and their photocatalytic activity in methylene blue.

#### 2. Materials And Methods

### 2.1. Chemicals

Chemicals used in the synthesis were tetraethylorthosilicate (TEOS), cerium nitrate hexahydrate (Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O), Ethanol (C<sub>2</sub>H<sub>5</sub>OH), NaOH solution (0,01M) and CTAB.

#### 2.2. Preperation of materials

#### **2.2.1.** Preparation of TiO<sub>2</sub>

The TiO<sub>2</sub> core was prepared by the sol-gel method and hydrolysis and polycondensation of TBT. 10 ml TBT and 25 ml absolute ethanol were mixed into 50 ml deionized water. Later, the mixed solution was stirred for 4 h after that solutions were separated by centrifugation, the particles washed several times with deionized water and ethanol before drying at 80 °C for 4 h. The latest final TiO<sub>2</sub> microparticle was obtained by calcining the above powder at 600 °C for 3 h.

### 2.2.2. TiO<sub>2</sub>/CeO<sub>2</sub> core shell particles

CeO<sub>2</sub>-coated TiO<sub>2</sub> microparticle was prepared by chemical precipitation method. TiO<sub>2</sub> microparticle prepared above was used as core for the coating experiment. First, 1.0 g TiO<sub>2</sub> cores and 1.5 g Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O were dissolved into 100 ml water that containing 0.2 g CTAB. The solution was dispersed for 30 min after its pH value was adjusted to about 10 by using 0.01 mol  $1^{-1}$  NaOH solution. Mixed solution was stirred for 4 h at aged for 2 h. The latest particles was collected by filtration, washing with deionized water for several times to remove contaminants, followed by drying overnight at 80 °C in vacuum and calcination at 400 °C for 3h.

#### **2.3.** Characterization

The crystalline phase and the component of the sample were examined by XRD(RigakuDmax 350) using copperK\_ radiation ( $\lambda = 0.154056$  nm). The IR spectrum analysis of precursor was carried out employing IR measurement system Thermo-Scientific, (Nicolet IS10-ATR). The microstructure and shape of the particle were investigated by SEM (JEOL JSM-7600F) and TEM (JEOL JEM 2100F HRTEM). The element was determined using (JEOL JSM-7600F) EDAX analyser with SEM measurement. XRD analysis were examined (RİKAGU-SMART LAB) measurement.

#### 3. Results and discussion

### 3.1. XRD analysis of CeO<sub>2</sub> and CeO<sub>2</sub>-coated SiO<sub>2</sub> nanoparticle

XRD patterns of the as-prepared CeO<sub>2</sub> (a) and TiO<sub>2</sub> (b) and CeO<sub>2</sub>-coated TiO<sub>2</sub> (c) microparticle are shown in Fig. 1 and 2. In both particles we observed characteristic CeO<sub>2</sub> peaks that was corresponding to the four strongest peaks of fluorite-structured CeO<sub>2</sub> (28.43, 32.92, 47.38, 56.27) diffractograms of the TiO<sub>2</sub>/CeO<sub>2</sub> core shell microparticle (Fig. 1). It means that the shell area of the core shell particles is CeO<sub>2</sub>.



Fig. 1. XRD patterns of CeO<sub>2</sub> microparticles





Fig. 2. XRD patterns of TiO<sub>2</sub> microparticles



Fig. 3. XRD patterns of CeO<sub>2</sub>-coated TiO<sub>2</sub> microparticle

We observed peak corresponding to the characteristic of an amorphous  $TiO_2 24.26^\circ$ , 27.40°, 36.29° ve 36.91° (Fig. 1). Figure 3 shows us that two different spectrum respectively. In one of these belonging to  $TiO_2$  and other one is  $CeO_2$  (25,23° and 28,61°). It means that  $TiO_2/CeO_2$  particles were synthesed completely which is confirmed with the observation of SEM and TEM images.

### 3.2. FTIR analysis

3e+004

Intensity (cps)

b

25.26 27.40

FTIR measurement was measurement for TiO<sub>2</sub> microparticle, and TiO<sub>2</sub>/ CeO<sub>2</sub> core shell particle as shown in Fig.4 and 5. O-H bands from water is detected with around 3430 cm<sup>-1</sup>, corresponding to O–H stretching frequency, and (Fig. 4).  $[Ti(OH)_2^{2-}]$  stretching at between 1640 cm<sup>-1</sup> and 1450 cm<sup>-1</sup>. Figure 5 shows that 1620 cm<sup>-1</sup> is belonging to Ti-O-Ti stretching. 2255 cm-1 is belonging to TiOH<sub>2</sub><sup>2-</sup>.Comparing the spectra of TiO<sub>2</sub> microparticle and the

 $TiO_2/CeO_2$  core shell microparticle the band at 1711, 1620, 1554, 1192 ve 1040 cm<sup>-1</sup> is belonging to  $TiO_2/CeO_2$  microparticles.





Fig. 4. IR spectra of  $TiO_2/CeO_2$  core shell microparticle.

## **3.1.4. SEM and EDAX**

SEM analysis gives information about size and shape of particles. Fig. 6 and 7 shown that  $TiO_2$  particles and of the  $TiO_2/CeO_2$  core shell particles in the SEM images. Monodispersive and very uniform spheres can be clearly observed (Fig. 6). Particle size of the  $TiO_2/CeO_2$  core shell particles, is approximately 500-1000 nm (Fig. 7). EDAX carried out on  $TiO_2/CeO_2$  core shell particle indicated qualitatively the presence of  $CeO_2$  (Fig. 7).



Fig. 5. SEM images of  $TiO_2$  particles





Fig. 6. SEM images of  $TiO_2/CeO_2$  core shell particles



Fig. 7. EDAX analysis of TiO<sub>2</sub>/CeO<sub>2</sub> core shell particles

### 3.4. TEM analysis

Fig. 9 show TEM images of the  $TiO_2/CeO_2$  core shell particles. After coating, particle size of the microparticles increases, and a characteristic stage of CeO<sub>2</sub> with a lighter opposition and shagginess can be clearly observed, which shows the presence of  $TiO_2/CeO_2$  core shell particles.



Fig. 9. TEM analysis of TiO<sub>2</sub>/CeO<sub>2</sub> core shell particles

# 3.5. Photocatalytic Activity in Methylene Blue

In this study, we investigated that degradation of MO and MB for  $TiO_2$  particles and  $TiO_2/CeO_2$  particles under UV light. Because  $CeO_2$  is not photoactivity materials. Therefore we researched it, after coated  $TiO_2$  layer what is shown activity. The photoactivity of  $TiO_2$  particles are % 34 MO and % 41 MB respectively. But the photoactivity of  $TiO_2/CeO_2$ 

particles is %6 MO and %46 MB. It can be explained that this surface of TiO<sub>2</sub>/CeO<sub>2</sub> particles



Fig. 9. Removal of MO and MB with TiO<sub>2</sub> particles in UV



Fig.10. Removal of MO and MB with TiO<sub>2</sub>/CeO<sub>2</sub> core shell particles under UV

# **3.6.** Conclusion

In this study, the coating of CeO<sub>2</sub> on the TiO<sub>2</sub> particle surface was performed employing precipitation method. XRD study showed that the core area of the composite particle is amorphous TiO<sub>2</sub>, and the shell area is fluorite-structured CeO<sub>2</sub>. IR spectra showed that the coating of the TiO<sub>2</sub> particle with CeO<sub>2</sub> evidently gives at 1711, 1620, 1554, 1192 ve 1040 cm<sup>-1</sup> is belonging to TiO<sub>2</sub>/CeO<sub>2</sub> microparticles. SEM and TEM photos revealed that CeO<sub>2</sub>-coated TiO<sub>2</sub> particle possess uniform particle size about 500-600 nm in spherical shape and we showed CeO<sub>2</sub> particles was not contributed on TiO<sub>2</sub> surface homogenously.

#### References

- [1] H. Wang, M. Yu, C.K. Lin, J. Lin, J. Colloid Interface Sci. 300 (2006) 176.
- [2] Bin Li, Xi Wei, Wei Pan, J. Power Sources 193 (2009) 598.
- [3] L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Langmuir 12 (1996) 4329.
- [4] D. Chen, J. Li, C. Shi, X. Du, N. Zhao, J. Sheng, S. Liu. Chem. Mater. 19 (2007) 3399.
- [5] X.D. He, X.W. Ge, M.Z. Wang, Z.C. Zhang, J. Colloid Interface Sci. 299 (2006) 791.
- [6] M. Ocana, M. Adres-Verges, R. Pozas, C.J. Serna, J. Colloid Interface Sci. 294 (2006) 355.
- [7] M.R. Kim, J.H. Chung, M. Lee, S. Lee, J.-J. Jang, J. Colloid Interface Sci. 350 (2010) 5.
- [8] R.P. Bagwe, K.C. Khilar, Langmuir 16 (2000) 905.
- [9]Corradi AB, Bondioli F, Ferrari AM, Manfredini T (2006). Synthesis and characterization of nanosized ceria powders by microwave–hydrothermal method. Mater. Res. Bull., 41: 38 44.
- [10]Li J, Ikegami T, Wang Y, Mori T. Nanocrystalline Ce1-xYxO2-x/2 (0≤X≤0.35) Oxides via Carbonate Precipitation: Synthesis and Characterization. J. Solid State Chem., (2002) 168: 52–59.
- [11]Sang-Ho Chung a, Dae-Won Lee b, Min-Sung Kim a, Kwan-Young Lee a, The synthesis of silica and silica–ceria, core–shell nanoparticles in a water-in-oil (W/O) microemulsion composed of heptane and water with the binary surfactants AOT and NP-5, J. of Colloid and Interface Sci. 355 (2011) 70–75
- [12]Cheviré F, Munoz F, Baker CF, Tessier F, Larcher O, Boujday S, Colbeau-Justin C, Marchand R (2006). UV absorption properties of ceria-modified compositions within thefluorite-type solid solution CeO2–Y6WO12. J. Solid State Chem., 179: 3184–3190.
- [13]Souza ECC, Brito HF, Muccillo ENS (2010). Optical and electrical characterization of samaria-doped ceria. J. Alloys Compd., 491: 460–464.
- [14]Matovic, B., Boskovic, S., Logar, M., Radovic, M., Dohcevic-Mitrovic, Z., Popovic, Z.V., Aldinger F. (2010). Synthesis and characterization of the nanometric Pr-doped ceria, J. Alloys Compd, 505: 235–238.
- [15]Lapa, C.M., de Souza, D.P.F., Figueiredo, F.M.L., Marques, F.M.B. (2010). Two-step sintering ceria-based electrolytes, Int. J. Hydrogen Energy, 35: 2737–2741.
- [16]Gorte, RJ., Zhao, S. (2005) Studies of the water-gas-shift reaction with ceria-supported precious metals, Catal. Today, 104: 18–24.
- [17]Zhou XD, Huebner D, Anderson HU (2002). Size-induced lattice relaxation in CeO2 nanoparticles. Appl. Phys. Lett., 80: 3814–3816.
- [18]Xin J, Cai W, Tichy JA. A fundamental model proposed for material removal in chemical–mechanical polishing. Wear, (2010) 268: 837–844.
- [19]Jalilpour, M., and Fathalilou, M. Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. Int. J. of Phy. Sci. (2012). 7(6), 944.
- [20]Li J, Ikegami T, Wang Y, Mori T (2002). Nanocrystalline Ce1-xYxO2-x/2 (0≤X≤0.35) Oxides via Carbonate Precipitation: Synthesis and Characterization. J. Solid State Chem., (2002) 168: 52–59.
- [21]J.W. Raebiger, J.L. Manson, R.D. Sommer, U. Geiser, A.L. Rheingold, J.S. Miller, Inorg. Chem. 40 (2001) 2578.
- [22] N.J. Babu, A. Nangia, Cryst. Growth Des. 6 (2006) 1753;
- [25] Orel Z.C, Orel B.Phys Status Solid B. (1994) 186:33.
- [26] Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P. Electron Localization determines defect formation on ceria substrates. Sci. (2005) 309:752.

- [27] Xiaolan Song, X., Nan Jiang, N., Yukun Li, Y., Dayu Xu, D., Guanzhou Qiu, G. Synthesis of CeO<sub>2</sub>-coated SiO<sub>2</sub> nanoparticle and dispersion stability of its suspension, Mat. Chem. and Phy. 110 (2008) 128–135
- [28]Lin, Y., Xiaoming, Z. (2008) Preparation of highly dispersed CeO<sub>2</sub>/TiO<sub>2</sub> core-shell nanoparticles. Mat. Let. (2008) 62: 3764.
- [29] Yue Lin , Zhang Xiaoming, Preparation of highly dispersed CeO<sub>2</sub>/TiO<sub>2</sub> core-shell nanoparticles, Materials Letters 62 (2008) 3764–3766
- [30] Fu, X., Clark, L.A., Yang, Q., Anderson, M.A. (1996) Enhanced photocatalytic performance of titania-based binary metal oxides TiO<sub>2</sub>/SiO<sub>2</sub> and TiO<sub>2</sub>/ZrO<sub>2</sub>, *Environ. Sci. Technol.*, 30: 647–653.
- [31] Konstantinou, I.K., Albanis, T.A. (1999) TiO<sub>2</sub>-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations : A review, *Appl. Catal. B: Environ.*, 19: 1–14.